Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(4): 1421-1438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651929

RESUMO

Kluyveromyces marxianus is a non-conventional yeast with outstanding physiological characteristics and a high potential for lignocellulosic ethanol production. However, achieving high ethanol productivity requires overcoming several biotechnological challenges due to the cellular inhibition caused by the inhibitors present in the medium. In this work, K. marxianus SLP1 was adapted to increase its tolerance to a mix of inhibitory compounds using the adaptive laboratory evolution strategy to study the adaptation and stress response mechanisms used by this non-Saccharomyces yeast. The fermentative and physiological parameters demonstrated that the adapted K. marxianus P8 had a better response against the synergistic effects of multiple inhibitors because it reduced the lag phase from 12 to 4 h, increasing the biomass by 40% and improving the volumetric ethanol productivity 16-fold than the parental K. marxianus SLP1. To reveal the effect of adaptation process in P8, transcriptome analysis was carried out; the result showed that the basal gene expression in P8 changed, suggesting the biological capability of K. marxianus to activate the adaptative prediction mechanism. Similarly, we carried out physiologic and transcriptome analyses to reveal the mechanisms involved in the stress response triggered by furfural, the most potent inhibitor in K. marxianus. Stress response studies demonstrated that P8 had a better physiologic response than SLP1, since key genes related to furfural transformation (ALD4 and ALD6) and stress response (STL1) were upregulated. Our study demonstrates the rapid adaptability of K. marxianus to stressful environments, making this yeast a promising candidate to produce lignocellulosic ethanol. KEY POINTS: • K. marxianus was adapted to increase its tolerance to a mix of inhibitory compounds • The basal gene expression of K. marxianus changed after the adaptation process • Adapted K. marxianus showed a better physiological response to stress by inhibitors • Transcriptome analyses revealed key genes involved in the stress response.


Assuntos
Furaldeído , Kluyveromyces , Furaldeído/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Perfilação da Expressão Gênica , Fermentação , Etanol/metabolismo
2.
FEMS Yeast Res ; 22(1)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35084467

RESUMO

Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to ß-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA. Some of these genes were specifically expressed in some of the yeasts according to their fructans assimilation metabolism. Different hexose transporters that could be related to the assimilation of fructose and glucose were found in both the transcriptomes. Our findings provide a better understanding of AF assimilation in these yeasts and provide resources for further metabolic engineering and biotechnology applications.


Assuntos
Agave , Torulaspora , Fermentação , Frutanos/metabolismo , Perfilação da Expressão Gênica , Hidrólise , Saccharomycetales , Torulaspora/metabolismo
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718545

RESUMO

The yeast Kluyveromyces marxianus SLP1 has the potential for application in biotechnological processes because it can metabolize several sugars and produce high-value metabolites. K. marxianus SLP1 is a thermotolerant yeast isolated from the mezcal process, and it is tolerant to several cell growth inhibitors such as saponins, furan aldehydes, weak acids, and phenolics compounds. The genomic differences between dairy and nondairy strains related to K. marxianus variability are a focus of research attention, particularly the pathways leading this species toward polyploidy. We report the diploid genome assembly of K. marxianus SLP1 nonlactide strain into 32 contigs to reach a size of ∼12 Mb (N50 = 1.3 Mb) and a ∼39% GC content. Genome size is consistent with the k-mer frequency results. Genome annotation by Funannotate estimated 5000 genes in haplotype A and 4910 in haplotype B. The enriched annotated genes by ontology show differences between alleles in biological processes and cellular component. The analysis of variants related to DMKU3 and between haplotypes shows changes in LAC12 and INU1, which we hypothesize can impact carbon source performance. This report presents the first polyploid K. marxianus strain recovered from nonlactic fermenting medium.


Assuntos
Diploide , Kluyveromyces , Biotecnologia , Genoma Fúngico , Kluyveromyces/genética , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/genética
4.
Enzyme Microb Technol ; 147: 109783, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992405

RESUMO

Phlorizin is a low soluble dihydrochalcone with relevant pharmacological properties. In this study, enzymatic fructosylation was approached to enhance the water solubility of phlorizin, and consequently its bioavailability. Three enzymes were assayed for phlorizin fructosylation in aqueous reactions using sucrose as fructosyl donor. Levansucrase (EC 2.4.1.10) from Gluconacetobacter diazotrophicus (Gd_LsdA) was 6.5-fold more efficient than invertase (EC 3.2.1.26) from Rhodotorula mucilaginosa (Rh_Inv), while sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) from Schedonorus arundinaceus (Sa_1-SST) failed to modify the non-sugar acceptor. Gd_LsdA synthesized series of phlorizin mono- di- and tri-fructosides with maximal conversion efficiency of 73 %. The three most abundant products were identified by ESI-MS and NMR analysis as ß-D-fructofuranosyl-(2→6)-phlorizin (P1a), phlorizin-4'-O-ß-D-fructofuranosyl-(2→6)-D-fructofuranoside (P2c) and phlorizin-4-O-monofructofuranoside (P1b), respectively. Purified P1a was 16 times (30.57 g L-1 at 25 °C) more soluble in water than natural phlorizin (1.93 g L-1 at 25 °C) and exhibited 44.56 % free radical scavenging activity. Gd_LsdA is an attractive candidate enzyme for the scaled synthesis of phlorizin fructosides in the absence of co-solvent.


Assuntos
Gluconacetobacter , Florizina , Rhodotorula , Sacarose
5.
Electron J Biotechnol ; 49: 14-21, Jan. 2021. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1291625

RESUMO

BACKGROUND: Milk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by bgalactosidases. RESULTS: B-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with b(1 ? 6) and b (1 ? 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD. CONCLUSIONS: B-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.


Assuntos
Oligossacarídeos/biossíntese , beta-Galactosidase/metabolismo , Pantoea , Lactose/metabolismo , Proteínas Recombinantes , Indústria de Laticínios , Soro do Leite
6.
Carbohydr Polym ; 247: 116710, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829838

RESUMO

Enzymatic glycosylation is an efficient way to increase the water solubility and the bioavailability of flavonoids. Levansucrases from Bacillus subtilis (Bs_SacB), Gluconacetobacter diazotrophicus (Gd_LsdA), Leuconostoc mesenteroides (Lm_LevS) and Zymomonas mobilis (Zm_LevU) were screened for puerarin (daidzein-8-C-glucoside) fructosylation. Gd_LsdA transferred the fructosyl unit of sucrose onto the glucosyl unit of the acceptor forming ß-d-fructofuranosyl-(2→6)-puerarin (P1a), while Bs_SacB, Lm_LevS and Zm_LevU synthesized puerarin-4'-O-ß-D-fructofuranoside (P1b) and traces of P1a. The Gd_LsdA product P1a was purified and assayed as precursor for the synthesis of puerarin polyfructosides (PPFs). Bs_SacB elongated P1a more competently forming a linear series of water-soluble PPFs reaching at least 21 fructosyl units, as characterized by HPLC-UV-MS, HPSEC and MALDI-TOF-MS. Simultaneous or sequential Gd_LsdA/Bs_SacB reactions yielded PPFs directly from puerarin with the acceptor conversion ranging 82-92 %. The bi-enzymatic cascade synthesis of PPFs in the same reactor avoided the isolation of the intermediate product P1a and it is appropriate for use at industrial scale.


Assuntos
Bacillus subtilis/enzimologia , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Isoflavonas/síntese química , Polissacarídeos/síntese química , Glicosilação , Hidrólise , Sacarose/metabolismo
7.
Biotechnol Rep (Amst) ; 25: e00420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025510

RESUMO

Vinasses from the tequila industry are wastewaters with highly elevated organic loads. Therefore, to obtain value-added products by yeast fermentations, such as 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEA), could be interesting for industrial applications from tequila vinasses. In this study, four yeasts species (Wickerhamomyces anomalus, Candida glabrata, Candida utilis, and Candida parapsilosis) were evaluated with two different chemically defined media and tequila vinasses. Differences in the aroma compounds production were observed depending on the medium and yeast species used. In tequila vinasses, the highest concentration (65 mg/L) of 2-PEA was reached by C. glabrata, the inhibitory compounds decreased biomass production and synthesis of 2-PEA, and biochemical and chemical oxygen demands were reduced by more than 50 %. Tequila vinasses were suitable for the production of 2-phenylethylacetate by the shikimate pathway. A metabolic network was developed to obtain a guideline to improve 2-PE and 2-PEA production using flux balance analysis (FBA).

8.
3 Biotech ; 9(10): 373, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31588397

RESUMO

In this work, the white-rot fungus Pleurotus djamor was used for the first time to determine the degradation kinetics of the nonsteroidal anti-inflammatory drugs diclofenac, naproxen and, ketoprofen, either individually or in mixtures, in submerged cultures. Removal of 93% individual diclofenac and 99% diclofenac in mixtures with naproxen and ketoprofen at 6 h of incubation with the fungus was achieved. The elimination levels of naproxen and ketoprofen individually were 90% and 87%, respectively, after 48 h of incubation. However, the removal levels of these compounds in mixtures were 85% and 83%, respectively. On the other hand, during the degradation kinetics analysis, the enzymatic activities of laccases, manganese peroxidases, and lignin peroxidases were evaluated, yielding values of 3700, 270 and 31 U/L, respectively. Additionally, it was demonstrated that during degradation of diclofenac or the three drugs mixed in the submerged cultures, the enzymatic activity of extracellular laccases expressed by P. djamor increased by 200% and 300%, respectively. The activity of manganese peroxides increased by 126% with diclofenac and 138% when the mixture of drugs was added to the cultures. On the other hand, lignin peroxidase only increased activity by 123% with the drug mixture.

9.
Appl Microbiol Biotechnol ; 103(17): 6949-6972, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31359105

RESUMO

Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.


Assuntos
Técnicas de Visualização da Superfície Celular , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Proteínas de Membrana/metabolismo , Biotecnologia , Parede Celular/química , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Fungos/genética , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Enzyme Microb Technol ; 122: 19-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638505

RESUMO

Fructosylation can significantly improve the solubility, stability and bioactivity of phenolic compounds, increasing their health benefits. Levansucrase from Gluconacetobacter diazotrophicus (LsdA, EC 2.4.1.10) was found to transfer the fructosyl unit of sucrose to different classes of phenolic compounds. Among the various acceptors tested, the isoflavone puerarin and the phenol coniferyl alcohol were the most efficiently fructosylated compounds, with conversion rates of 93% and 25.1%, respectively. In both cases, mono-, di-, and trifructosides were synthesized at a ratio of 37:14:1 and 32:8:1, respectively. Structural characterization of the puerarin mono-fructoside revealed that the enzyme transferred the fructosyl moiety of sucrose to the O6-position of the glucosyl unit of puerarin. The water solubility of fructosyl-ß-(2→6)-puerarin was increased 23-fold, up to 16.2 g L-1, while its antioxidant capacity was only decreased 1.25-fold compared with that of puerarin.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Fenóis/metabolismo , Sacarose/metabolismo , Biocatálise , Glicosilação , Isoflavonas/química , Isoflavonas/metabolismo , Fenóis/química , Solubilidade
11.
World J Microbiol Biotechnol ; 34(10): 152, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267248

RESUMO

Vinasse is a waste obtained from the production of beverages, such as tequila and cachaça. The presence of acids, alcohols, sugars, minerals, amino acids, peptides, and nitrogen salts make vinasse a hazardous liquid waste to the environment, affecting the fauna, flora, and microbiota of rivers and lagoons. This study used biological treatment concomitant to volatile compound production. The yeasts used in the study were Saccharomyces cerevisiae (CCMA 0187 and CCMA 0188), Candida parapsilosis (CCMA 0544), and Pichia anomala (CCMA 0193). A higher percentage reduction in chemical and biochemical oxygen demand was observed in the tequila vinasse than in the cachaça vinasse. However, a higher production of volatile compounds was observed in the cachaça vinasse. C. parapsilosis CCMA 0544 produced the highest concentration of 2-phenylethanol (162 mg L-1). These results indicated that the environmental damage of vinasse can be reduced by treating vinasse with yeasts, and this treatment produces aroma compounds. This biological treatment has high economic potential, especially for the tequila industry.


Assuntos
Bebidas Alcoólicas , Aromatizantes/metabolismo , Resíduos Industriais , Compostos Orgânicos Voláteis/metabolismo , Gerenciamento de Resíduos/métodos , Leveduras/metabolismo , Agave/química , Agave/microbiologia , Álcoois/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Candida/metabolismo , Poluição Ambiental/prevenção & controle , Fermentação , Concentração de Íons de Hidrogênio , Álcool Feniletílico/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharum , Temperatura , Compostos Orgânicos Voláteis/análise , Leveduras/crescimento & desenvolvimento
12.
Rev. argent. microbiol ; 50(3): 234-243, set. 2018. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-977237

RESUMO

The goal of this study was to isolate, select and characterize bacteria with cellulolytic activity from two different coffee residue composting piles, one of which had an internal temperature of 57 -#9702;C and pH 5.5 and the other, a temperature of 61 -#9702;C, and pH 9.3. Culture media were manipulated with carboxymethylcellulose and crystalline cellulose as sole carbon sources. The enzyme activity was assessed by hydrolysis halo formation, reducing sugar production and zymograms. Three out of twenty isolated strains showed higher enzymatic activity and were identified as Bacillus subtilis according to their morphological, physiological, biochemical characteristics and based on the sequence analysis of 16S rDNA regions. The enzymatic extracts of the three selected strains showed exocellulase and endocellulase maximum activity of 0.254 and 0.519 U/ml, respectively; the activity of these enzymes was maintained even in acid pH (4.8) and basic (9.3) and at temperatures of up to 60°C. The enzymatic activities observed in this study are within the highest reported for cellulose produced by bacteria of the genus Bacillus. Endocellulase activity was shown in the zymograms from 24 h until 144 h of incubation. Furthermore, the pH effect on the endocellulase activity is reported for the first time by zymograms. The findings in this study entail the possibility to use these enzymes in the procurement of fermentable substrates for the production of energy from the large amount of residues generated by the coffee agroindustry.


El objetivo de este estudio fue aislar, seleccionary caracterizar bacterias con actividad celulolítica a partir de 2 diferentes pilas de compostaje de residuos de café, una con temperatura interna de 57°C y pH 5,5; la otra con temperatura interna de 61 °C y pH 9,3. Se utilizaron medios de cultivo con carboximetilcelulosa y celulosa cristalina como únicas fuentes de carbono. La actividad enzimàtica fue evaluada por formación de halos de hidrólisis, producción de azúcares reductores y zimogramas. De 20 cepas aisladas, 3 presentaron mayor actividad enzimàtica y fueron identificadas como Bacillus subtilis sobre la base de sus características morfológicas, fisiológicas y bioquímicas y del análisis de las secuencias de la región 16S del ADNr. Los extractos enzimáticos de las 3 cepas seleccionadas presentaron actividad de exocelulasa y de endocelulasa, con máximos de 0,254 y 0,519 U/ml, respectivamente; la actividad de estas enzimas se mantuvo incluso a pH ácido (4,8) o básico (9,3) y a temperaturas de hasta 60 °C. Las actividades enzimáticas halladas en este estudio se ubican dentro de las más altas reportadas para celulasas producidas por bacterias del género Bacillus. En los zimogramas se demostró actividad de endocelulasa desde las 24h hasta las 144h de incubación. Asimismo, se reporta por primera vez el efecto del pH sobre la actividad de endocelulasa observado por zimogramas. Los resultados de este estudio abren la posibilidad de hacer uso de estas enzimas en la obtención de sustratos fermentables para la producción de energía a partir de los residuos generados en grandes cantidades por la agroindustria del café.


Assuntos
Bacillus subtilis , Café , Celulases , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/enzimologia , Compostagem , Celulose , Celulases/metabolismo
13.
Bioresour Technol ; 263: 112-119, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29734065

RESUMO

The production of tequila in Mexico generates a large amount of agave bagasse per year. However, this biomass can be considered as a potential source for biofuel production. In this study, it is described how the hydrothermal pretreatment was scaled in a bench scale, considering the severity index as a strategy. The best condition was at 180 °C in isothermal regime for 20 min with 65.87% of cellulose content and high concentration of xylooligosaccharides (15.31 g/L). This condition was scaled up (using severity factor: [logR0] = 4.11), in order to obtain a rich pretreated solid in cellulose to perform the enzymatic hydrolysis, obtaining saccharification yields of 98.5 and 99.5% at high-solids loading (10 and 15%, respectively). The pre-saccharification and fermentation strategy was used in the bioethanol production at 10 and 15% of total pretreated solids, obtaining 38.39 and 55.02 g/L of ethanol concentration, corresponding to 90.84% and 87.56% of ethanol yield, respectively.


Assuntos
Agave , Biocombustíveis , Celulose , Etanol , Fermentação , Hidrólise
14.
Rev Argent Microbiol ; 50(3): 234-243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29289440

RESUMO

The goal of this study was to isolate, select and characterize bacteria with cellulolytic activity from two different coffee residue composting piles, one of which had an internal temperature of 57°C and pH 5.5 and the other, a temperature of 61°C, and pH 9.3. Culture media were manipulated with carboxymethylcellulose and crystalline cellulose as sole carbon sources. The enzyme activity was assessed by hydrolysis halo formation, reducing sugar production and zymograms. Three out of twenty isolated strains showed higher enzymatic activity and were identified as Bacillus subtilis according to their morphological, physiological, biochemical characteristics and based on the sequence analysis of 16S rDNA regions. The enzymatic extracts of the three selected strains showed exocellulase and endocellulase maximum activity of 0.254 and 0.519 U/ml, respectively; the activity of these enzymes was maintained even in acid pH (4.8) and basic (9.3) and at temperatures of up to 60°C. The enzymatic activities observed in this study are within the highest reported for cellulose produced by bacteria of the genus Bacillus. Endocellulase activity was shown in the zymograms from 24h until 144h of incubation. Furthermore, the pH effect on the endocellulase activity is reported for the first time by zymograms. The findings in this study entail the possibility to use these enzymes in the procurement of fermentable substrates for the production of energy from the large amount of residues generated by the coffee agroindustry.


Assuntos
Bacillus subtilis , Celulases , Café , Bacillus subtilis/enzimologia , Bacillus subtilis/isolamento & purificação , Celulases/metabolismo , Celulose , Compostagem
15.
Biomed Res Int ; 2017: 7824076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951875

RESUMO

The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.


Assuntos
Etanol/metabolismo , Plantas/metabolismo , Biomassa , Biotecnologia/métodos , Parede Celular/metabolismo , Celulose/metabolismo , Amido/metabolismo
16.
Appl Microbiol Biotechnol ; 101(13): 5223-5234, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593337

RESUMO

Enzymatic fructosylation of organic acceptors other than sugar opens access to the production of new molecules that do not exist in nature. These new glycoconjugates may have improved physical-chemical and bioactive properties like solubility, stability, bioavailability, and bioactivity. This review focuses on different classes of acceptors including alkyl alcohols, aromatic alcohols, alkaloids, flavonoids, and xanthonoids, which were tested for the production of fructoderivatives using enzymes from the glycoside hydrolase (GH) families 32 and 68 that use sucrose as donor substrate. The enzymatic strategies and the reaction conditions required for the achievement of these complex reactions are discussed, in particular with regard to the type of acceptors. The solubility and pharmacokinetic and antioxidant activity of some of these new ß-D-fructofuranosides in comparison is reviewed and compared with their glucoside analogs to highlight the differences between these molecules for technological applications.


Assuntos
Produtos Biológicos/metabolismo , Frutose/metabolismo , Glicosídeo Hidrolases/metabolismo , Sacarose/metabolismo , Produtos Biológicos/química , Glicosilação , Hexosiltransferases/metabolismo , Especificidade por Substrato
17.
Comb Chem High Throughput Screen ; 19(8): 627-635, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27515041

RESUMO

High throughput screening (HTS) is a powerful tool in biotechnology. The search for new or improved enzymes with suitable biochemical properties for industrial processes, has resulted in high efforts and research activities to develop new methodologies for activity screening. In this context, important advances have been achieved for the screening of cellulases and xylanases activities from wild and recombinant microorganisms, and from sequence databases. These enzymes have a wide range of industrial applications, including food, animal feed, textile, pulp and paper industries and detergents. Cellulases and xylanases along with pectinases, represent 20% of the world enzyme market. Recently, cellulases and xylanases have been used on fermentable sugars recovered from lignocellulosic biomass for second-generation biorefineries, aimed to produce chemical and biofuel platforms. As a result, HTS methods for biomass or biomass-degrading enzymes are gaining importance. This article presents evidence of the studies carried out for HTS of cellulase and xylanase activities.


Assuntos
Celulases , Ensaios de Triagem em Larga Escala/métodos , Xilosidases , Biomassa , Biotecnologia/métodos
19.
Genome Announc ; 3(4)2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26205871

RESUMO

Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome.

20.
Genome Announc ; 3(3)2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067948

RESUMO

Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...